Very high growth rate of 4H-SiC epilayers using the chlorinated precursor methyltrichlorosilane (MTS)

نویسندگان

  • H. Pedersen
  • S. Leone
  • A. Henry
  • F. C. Beyer
  • V. Darakchieva
  • E. Janzén
چکیده

The chlorinated precursor methyltrichlorosilane (MTS), CH3SiCl3, has been used to grow epitaxial layers of 4H-SiC in a hot wall chemical vapour deposition (CVD) reactor with growth rates higher than 100 mm/h. The addition of chlorinated species to the gas mixture prevents silicon nucleation in the gas phase, thus allowing higher input flows of the precursors resulting in much higher growth rate than that of standard silicon carbide (SiC) epitaxial growth using only silane, SiH4, and hydrocarbons as precursors. Since MTS contains both silicon and carbon, with the C/Si ratio 1, MTS was used both as single precursor and mixed with silane or ethylene to study the effect of the C/Si and Cl/Si ratios on growth rate, morphology, and doping of the epitaxial layers. When using only MTS as precursor, the growth rate showed a linear dependence on the MTS molar fraction in the reactor. The growth rate dropped for C/Sio1 but was constant for C/Si41. Further, the growth rate decreased with lower Cl/Si ratio. This study shows that MTS is a promising precursor for homoepitaxial growth of SiC within the concept of chloride-based SiC growth. r 2007 Elsevier B.V. All rights reserved. PACS: 81.05.Hd; 81.10.Bh; 81.15.Gh

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SiC epitaxy growth using chloride-based CVD

The growth of thick epitaxial SiC layers needed for high-voltage, high-power devices is investigated with the chloride-based chemical vapor deposition. High growth rates exceeding 100 μm/h can be obtained, however to obtain device quality epilayers adjustments of the process parameters should be carried out appropriately for the chemistry used. Two different chemistry approaches are compared: a...

متن کامل

Non-Contact Characterization of Recombination Processes in 4H-SiC∗

Carrier decay transients in 4H-SiC n-type and p-type epilayers have been characterized using a non-destructive, non-contact microwave photoconductivity technique. Decay transients show a two-stage exponential decay with first decay constants as high as 400 ns in 10 μm p-type epilayers. The second decay constant increases with temperature and is dominated by interface recombination.

متن کامل

Chloride based CVD of 3C-SiC on (0001) α-SiC substrates

A chloride-based chemical-vapor-deposition (CVD) process has been successfully used to grow very high quality 3C-SiC epitaxial layers on on-axis α-SiC substrates. An accurate process parameters study was performed testing the effect of temperature, in situ surface preparation, precursor ratios, nitrogen addition, and substrate polytype and polarity. The 3C layers deposited showed to be largely ...

متن کامل

Effect of Low Pressure on Surface Roughness and Morphological Defects of 4H-SiC Epitaxial Layers

In this work, 4H-SiC epilayers are performed on 4° off-axis substrates under low pressure condition by horizontal hot wall chemical vapor deposition (HWCVD) with a standard chemistry of silane-propane-hydrogen, which focuses on the effects of growth pressure on morphology, basal plane dislocations (BPDs) and crystalline quality. It is found that morphological defects reduce with the decreasing ...

متن کامل

Structure of “star” defect in 4H-SiC substrates and epilayers

The structure of the “star” defect in 4H-SiC substrates and its effects on the extended defect structures in the epilayers were studied by molten KOH etching and transmission x-ray topography. Star defects consist of a center region with high densities of threading dislocations (both edge and screw types) and six arms of dislocation arrays extending along <11-20> directions. In addition, multip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007